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Monte Carlo study of the Z(5) model? 
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Departamento de Fisica, Pontificia Universidade Catblica, Cx.P. 38071, Rio de Janeiro, 
RI, Brasil 

Received 11 September 1984 

Abstract. The phase diagram of the Z(5) model on a square lattice is studied using Monte 
Carlo simulation techniques. We confirm the existence of three phases in the ferromagnetic 
Z(5) model and find a critical phase for the antiferromagnetic model. We determine the 
phase boundaries using Monte Carlo renormalisation group methods. 

1. Introduction 

The Z(5)  model is defined as follows. Consider a square lattice whose sites are occupied 
by classical ‘spins’, S, which can take values eie, B = 2k.rr/5, k = 0, 1, . . . , 4 .  Assuming 
nearest-neighbour interactions only, the total energy of the Z(5) model on a square 
lattice is defined as 

H =  -J1 C {cos[B(n) - B ( n + p ) ]  - 1)- J2 C {COS 2 [ B ( n )  - B ( n  + p ) ]  - I}. (1) 
n+ n , p  

In equation (1) n is a vector that labels the lattice sites, p represents the conventional 
primitive vectors of the square lattice, and J 1  and J2 are the coupling constants. 

According to equation (1) there are, in general, three distinct possibilities for the 
energy of a pair of nearest-neighbour spins, depending on the angle AB between them: 

Eo=O A B = O  

El = aJl  + bJ2 A B  = *2.rr/5 (2) 
E, = bJ ,  + aJ ,  A 6  = *4.rr/5 

where 

JS - 
a = 1 -cos = - (45 - 1) -- 0.691 

4 

JS 
b= 1 - c o s ~ T / ~ = -  ( v % + l ) z  1.809. 

4 

From equations (2)  we see that E ,  and E2 are doubly degenerate and that the 
partition function 9 = Tr e-H’kT is invariant under the exchange of J 1  and J2. 

Throughout this paper we refer to the region of the coupling constant space where 
both El and E2 are positive as the ferromagnetic ( F )  region and to that where at least 
one of them is negative as the antiferromagnetic (AF) region. 

t Work partially supported by FINEP, CNPq and CAPES. 
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In terms of J ,  and J2 the F region corresponds to 

J ,  > 0 J 2 / J , >  -a/b--0.382 

J ,  < 0 J2 /J1  < -b/a 1-2.618 

and the AF region corresponds to 

J ,  > 0 J 2 / J l  < -a /b  - -0.382 

J ,  < 0 J 2 / J l  > -b/a == -2.618. 

It can be shown that 55 obeys the generalised self-duality relations (Alcaraz and 
Koberle 1980): 

%(XI,  x2) = B%(xT, X T )  ( 3 )  

where 

x,  = exp( - E , /  k T )  

x2 = exp( - E,/  k T )  

and 

1 +2(1 -a)xl  +2(  1 - b)x2 
1+2x,+2x,  

x; = 

1 +2(1-  b)x ,+2(1-  a)x2 
1 + 2x, + 2x, 

x; = 

(4) 

and B is a non-singular function of J l / k T  and J 2 / k T .  Generalised self-duality holds 
only if 

( 1 - a ) ~ ,  + ( 1 - b)x2 > -+ 
( 1 - b)x, + ( 1 - a)x2 > -f (6) 

since both xT and x? should be positive. 
The region of the coupling constant space defined by equations (6), which we refer 

to as the duality ( D )  region, lies within the F region. 
The phase diagram of the Z(5) model in the F region has been studied by many 

authors (Elitzur et a1 1979, Alcaraz and Koberle 1980, Einhorn et a1 1980, Domany 
et a1 1980, Rujan et a1 1981, Roomany and Wyld 1981). Elitzur et a1 (1979) and 
Alcaraz and Koberle (1980), using duality and Griffiths inequalities between correlation 
functions, suggested the existence in the F region of a critical phase, characterised by 
power-law decay of correlations, besides the usual ferromagnetic and disordered ones. 
Domany et a1 (1980) obtained a critical phase for the Z(5) model on a square lattice 
using Monte Carlo simulations and exploring the mapping of the Z(5) model on the 
SOS model along the x1 = 0 (or x2 = 0) line. The existence of a critical phase in the F 

region is further supported by Monte Carlo renormalisation group studies carried out 
by Tobochnick (1982) for the five-state ferromagnetic clock model, which is a particular 
case of the Z(5) model with J2 = 0. However, calculations of the phase diagram using 
the Migdal-Kadanoff renormalisation group transformation, carried out by Rujan et 
a1 (1981), and finite-size scaling, carried out by Roomany and Wyld (1981), failed to 
obtain a critical phase. Our results, described in § 2, further confirm the existence of 
a critical phase in the F region. 
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In the AF region much less is known about the phase diagram. An interesting 
question is whether there is a critical phase in this region or not. 

The ground state in the AF region is such that nearest-neighbour spins make an 
angle of *$T (or *+T)  between them. The degeneracy of this ground state gives rise 
to extensive ground-state entropy. Berker and Kadanoff ( 1980) suggested that systems 
with this property might exhibit a critical phase. Baxter (1982) showed that the AF 

N-state Potts model defined on a square lattice, which also has extensive ground-state 
entropy, is disordered at all finite temperatures for N 2 3 .  Thus,the five-state Potts 
model, which is a particular case of the Z(5)  model for J 2 /  J ,  = 1 and J ,  < 0, does not 
exhibit a critical phase. Cardy (1981) suggested that the AF N-state clock model 
belongs to the same universality class of the ferromagnetic 2N-state clock model, which 
for N 3 3 has three phases (Elitzur et a1 1979, Alcaraz and Koberle 1980), one of them 
being critical. Thus the AF five-state clock model, which is a particular case of the 
Z(5) model for J2 = 0, J1  < 0, should, according to Cardy’s suggestion, belong to the 
same universality class as the ferromagnetic ten-state clock model. However, studies 
of the AF three-state Potts model, which is identical to the AF three-state clock model, 
carried out by den Nijs et a1 (1982), showed that a critical phase occurs only when 
second-neighbour interactions are considered. Thus it is not clear whether Cardy’s 
suggestion applies to the AF five-state clock model with nearest-neighbour interactions 
only. 

In this paper we investigate the question of the existence of critical phases in the 
Z(5) model using Monte Carlo (MC) simulation techniques. We analyse the MC data 
using both the standard technique of following the temperature dependence of thermo- 
dynamic quantities, and MC renormalisation group ( MCRG) methods, as described in 
§ 2. The combination of these two methods allows us to identify critical phases and 
to locate, approximately, their boundaries. We confirm the existence of a critical phase 
in the F region and find evidence that it extends itself into the AF region. The results 
of this analysis are described in § 3. A summary of our conclusions is presented in § 4. 

2. Monte Carlo simulations 

In order to study the phase diagram of the Z(5) model over the entire parameter space 
we carried out Monte Carlo (MC)  computer simulations (Binder 1979) on square lattices 
of sizes ranging from 16 x 16 to 64 x64, subjected to periodic boundary conditions. 
The spin-flipping procedure used here is similar to that described in a previous paper 
(Carneiro et a1 1982). 

In this section we describe the method of analysis of the MC data generated in 
these simulations. Both standard MC methods (Binder 1979) and MC renormalisation 
group ( MCRG) techniques (Swendsen 1982) are discussed. 

Most of the data was obtained in 20 x 20 and 40 x40 lattices. In these cases standard 
MC methods of analysis were employed. We calculated the internal energy, specific 
heat (from the fluctuations of the internal energy), order parameters and the variation 
with distance of the spin-spin correlation function. Peaks in the specific heat as a 
function of temperature were used as a first indication of a phase transition. The 
temperature dependence of the order parameter was used to identify phases and to 
locate their boundaries. The variation with distance of the spin-spin correlation 
function was also used to detect phase transitions and to identify possible critical phases. 
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In these MC simulations, data was taken after 1 MC step/spin. The total number 
of MC steps/spin used varied from 2500, far from transition points, to 10 000 close to 
the phase boundaries. Between 30-50% of the initial steps were discarded to allow 
for thermal equilibrium to be reached. 

We also carried out a MCRG analysis of data taken on 16 x 16, 32 x 32 and 64 x 64 
lattices and 18 x 18 and 54 x 54 lattices, at selected points of the parameter space where 
the previous analysis suggested the existence of critical phases. The MCRG method 
used here consists, as usual (Swendsen 1982), of applying a chosen RG transformation 
to spin configurations generated by the MC simulation. 

Spin configurations selected for analysis were recorded every 20 MC steps/spin. 
The total number of MC steps/spin used to determine each point was 60000. Close 
to 20% of the initial steps were discarded to allow for thermal equilibrium to be reached. 

Two different RG transformations were used in this analysis. The first one, shown 
schematically in figure 1, has scale factor A = 2. The cells consist of four spins, belonging 
to the same sublattice of the square lattice, which are second neighbour to each other. 
The cell spin is determined by the majority rule, using the spin in the left-hand corner 
as tie-breaker. 

i o ;  i b )  

Figure 1. Schematic representation of the renormalisation group transformation with A = 2. 
The two sublattices are represented by 0 and 0, respectively. The four-spin cells are 
represented by squares in ( a ) .  The cell spins are represented by W and 0 in ( b ) .  

The other RG transformation, shown schematically in figure 2, has scale factor 
A = 3. The cells consist of nine spins, belonging to the same sublattice of the square 
lattice and the cell spin is also determined by the majority rule. 

These RG transformations preserve the symmetry of ground states with ferromag- 
netic as well as antiferromagnetic order. This means, in general, that states in which 
the two sublattices are occupied by equal or different spins will be mapped into 
themselves by the transformations. With this choice of the RG transformation we expect 
to guarantee that phases with antiferromagnetic order, if present in the phase diagram, 
are not missed in the analysis, as they probably would if we choose a cell with spins 
of both sublattices (Niemeijer and van Leeuwen 1976). 

To determine the phase boundaries we adopted the method suggested by Wilson. 
It consists of comparing correlation functions calculated in two r x r lattices which 
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Figure 2. Schematic representation of the renormalisation group transformation with A = 3. 
The two sublattices are represented by 0 and 0, respectively. The nine-spin cells are 
represented by squares in ( a ) .  The cell spins are represented by and 0 in ( b ) .  

are obtained from original lattices of sizes L x L and AL X A L  by the application of 
the RG transformation m and m + 1 times, respectively ( A  = L/  r, A = 2 , 3 ) .  The points 
of the parameter space where the two correlation functions are equal correspond to 
phase boundaries. If the correlation functions are equal over a finite portion of the 
parameter space, then this region corresponds to a critical phase (Tobochnik 1982). 

In the case of the Z(5) model we calculated first, second and third neighbour 
correlation functions such as 

and 

where p = 1, 2 and 3 indicates first, second and third neighbour sites, respectively, and 
p (  p )  are, respectively, the primitive vectors of the square lattices formed by first 
neighbour sites ( p  = l ) ,  second neighbour sites ( p  = 2 )  and third neighbour sites ( p  = 3) .  
Here we work with r = 4 and 8, L = 64, 32 and 16 or r = 6, L = 54 and 18. 

3. Results 

To obtain the phase diagram of the Z(5) model we proceeded as follows. First, we 
used specific heat peaks as an indication of the points where a phase transition might 
occur. Our results are shown in figure 3. 

At some fixed values of J J J , ,  suggested by figure 3, we carried out a detailed 
analysis, using the methods outlined above, to verify if the specific heat peaks do 
indeed correspond to phase transitions and to identify the phases. The results of this 
analysis are discussed next. 
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Figure 3. Plot of the location of specific heat peaks. Points represented by 0 are the result 
of MC simulations and those obtained by application of the J , - J 2  symmetry. P is the 
transition point on the scalar Potts model line. Q is the transition point obtained by Fateev 
and Zamolodchikov. Curve SD is the self-dual line; self-duality holds to the right (left) 
of curve C for J ,  > 0 ( J ,  <O). I is the ferromagnetic phase, I 1  is the critical phase and 111 
is the disordered phase. J 2 / J 1  = 0 is the vector Potts model h e .  Ferromagnetic ground 
states are located to the right of point A for J ,  > 0, and to the left of point B for Jl < 0. 

First we consider the ferromagnetic region J ,  > 0 and J2 /  J 1  > - a /  b -0.382. In 
this region generalised self-duality holds to the right of curve C in figure 3. We 
concentrate our discussion on the portion of this region extending from J 2 /  J 1  = -0.382 
to J 2 / J ,  6 1.0, where, for a fixed value of J 2 / J 1 ,  the specific heat against temperature 
plot has two peaks, indicating the existence of three phases. A region with the same 
phase structure as that exists for J J J ,  3 1, since the phase diagram is symmetric with 
respect to J2 t) J , .  

A typical curve for the variation of the specific heat, C / N k ,  with temperature in 
this region is shown in figure 4. Also shown is the variation of the order parameter 
( S )  with temperature. At all points between J 2 / J 1  = -0.382 and J 2 /  J 1  = 0.8 shown in 
figure 3, we observed a similar behaviour for C /  Nk and ( S ) .  The specific heat peaks 
might indicate two phase transitions, one from the ferromagnetic phase at low tem- 
peratures to an intermediate phase and another from this intermediate phase to the 
disordered phase. According to the arguments put forth by Alcaraz and Koberle (1980) 
and Elitzur er af  (1979), if an intermediate phase exists containing the self-dual line 
it must be critical. The slow variation of ( S )  from -1 to -0, between the two specific 
heat peaks (figure 4), is not inconsistent with a critical phase, since the finite size of 
the system allows for a non-zero order parameter in this phase. 
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Figure 4. Temperature dependence of the specific heat C/ Nk (0)  and the order parameter 
(S) ( X )  for JJJ, = -0.3. Full curves are guides to the eye. 

In order to check if the intermediate phase indeed exists we calculated the spin-spin 
correlation function from our MC data in 54 x 54 lattices: 

K ( r )  = I(S(n)S*(n+ ~ i ) ) - ( S ( n ) ) ( S * ( n +  ~ c L I ) ) I  (9) 

where S(n) = exp(iO(n)). 
The results for K ( r )  give only a qualitative indication whether the correlation 

length is of the order of the size of the system or of the order of a few lattice spacings. 
Our results for J2 /J ,  = -0.3 are shown in figure 5. 
For kT/J1=0 .175  (curve A, figure 5 ) ,  which corresponds to a point inside the 

ferromagnetic phase (cf figure 4 ) ,  K ( r )  is short-ranged as expected. For k T /  J1 = 0.30 
and 0.60 (curves B and C ,  figure 5 )  K ( r )  falls off slowly with r, indicating that in this 
region of the phase diagram the correlation length is of the order of the size of our 
system. For k T / J ,  = 0.80 (curve D, figure 5) K ( r )  falls with distance much faster than 
at k T /  J ,  = 0.30 and 0.60, indicating that its behaviour is changing again to short-range, 
as expected in the high-temperature disordered phase. 

These results confirm that there is an intermediate phase separating the low- 
temperature ferromagnetic phase from the high-temperature disordered one and suggest 
that it is a critical phase. 

To investigate further the existence of a critical phase inside the ferromagnetic 
region, we analysed our MC data using the MCRG method outlined above. We show, 
in figure 6, a plot of F, (4 ,  16) and F, (4 ,32 )  (cf equation (7 ) )  for J 2 / J I  = -0.30 as a 
function of the temperature of the unrenormalised spin system. The bars in figure 6 
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1 0  L 

: 0.10 
I \ 

0 

1 10 20 30 

Figure 5. Variation with distance of the correlation function K ( r )  for J J J ,  = -0.3. Full 
curves are guides to the eye. Values of k T / J , :  0, 0.175; x, 0.30; A, 0.60; 0, 0.80. 

are estimates of the error associated with the value of the correlation function, using 
standard error analysis (Binder 1979). These two correlation functions are equal for 
0.2 6 k T /  J ,  s 0.6, indicating the existence of a critical phase between these two values. 
For k T /  J ,  < 0.2, Fl(4, 32) > Fl(4, 16), indicating (Tobochnik 1982) an ordered phase 
and for k T / J ,  > 0.6, F,(4,32) < F,(4, 16), indicating a disordered phase. 

The location of the boundary between the ordered phase and the critical phase for 
J2/ J ,  = -0.30 obtained by MCRG coincides, within the errors of our simulation, with 
the location of the low-temperature specific heat peak (cf figure 4). The same is not 
true for the boundary between the critical phase and the disordered phase. In this 
case (for J2 /  J1  = -0.30) the MCRG locates the phase boundary at a lower temperature 
than that of the specific heat peak. For the five-state clock model ( J2/ J ,  = 0) Tobochnik 
finds that neither of the two specific heat peaks coincide with the phase boundaries 
obtained by MCRG. This result is not surprising since in a transition from a critical 
phase to a disordered phase the specific heat does not have a singularity at the phase 
boundary, but shows a maximum above the transition temperature. As duality holds 
in the F region, there is no reason to expect a singularity in C / N k  at the boundary 
between the ferromagnetic phase and the critical phase either. At most, we expect to 
see a maximum in C / N k  associated with the transition. Thus the points where the 
specific heat has peaks do not coincide with the boundaries of the critical phase. The 
determination of these boundaries requires carrying out the MCRG analysis for several 
values of J2/ J 1 ,  which we did not attempt. The available information from our own 
work and from Tobochnik (1982) is summarised in figure 10. 

In the vicinity of the ferromagnetic five-state Potts model, where J 2 / J 1  = 1 and 
J1  > 0, our results are much more difficult to interpret. It is well known that the five-state 



Monte Carlo study of the Z(5) model 

1.0 

0.9 

0.8 

E 

2025 

- 

- 

- 

- 
- 

- 

i 
1 

I 

I 
i 

f 
i 

t 
I 

f 

I I I I 1 1 1 

0 2  0 4  0 6  0 8  
kTlJ.  

Figure 6. Variation of the correlation functions F,(4,32) ( A )  and F,(4,16) (0) with the 
unrenormalised spin system temperature, for J 2 /  J ,  = -0.3. 

ferromagnetic Potts model has a first-order transition at P (Baxter 1973). As J2/J1 + 1 
we observe that the two specific heat peaks obtained get closer and closer to each 
other until they merge into a single one located approximately on the self-dual line, 
SD, and that ( S )  vanishes faster and faster (figures 4 and 7). It has been suggested 
(Fateev and Zamolodchikov 1982) that the regions where the critical phase exist end 
at points on the self-dual line, SD, at each side of P (see figure 3) ,  and that these 
points should correspond to models with J2/ J1 = 0.64 and J2/  J1 = 1.56, which are exactly 
soluble. If this is true, the portion of the self-dual line between these two end points 
coincides with the phase boundary between the ferromagnetic and the disordered 
phases. The phase transition along this line is thought to be first order, as it is at P. 
The observation that the specific heat peaks merge at the self-dual line is consistent 
with this suggestion. However, we cannot determine precisely the endpoints of the 
critical phases nor can we determine the order of the transition near P. 

Next we consider the AF region of the phase diagram. As we shall see in the 
discusssion that follows, our results indicate the existence of a critical phase at low 
temperature in the AF region and suggest that it is the continuation into this region of 
the critical phase observed in the F region. 

The location of the specific heat peaks in the AF region is also shown in figure 3.  
We find that in MC runs with lo4 MC steps/spin the specific heat has two maxima, 
similar to figure 4. As the number of MC steps/spin is increased to 6 x lo4 MC steps/spin 
we verified, for a few values of J2/ J1, that one of the maxima completely disappears 
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k TIJ, 

Figure 7. Temperature dependence of the specific heat C /  Nk (0)  and of the order parameter 
(S) ( x) for J2/  J ,  = 0.8. Full curves are guides to the eye. 

and the other, usually the high temperature one, remains unaltered, indicating the 
existence of a single transition. As we shall see below, the MCRG analysis reveals the 
presence, in the AF region, of only two different phases. We believe that the two-peak 
structure observed in this region using IO4  MC steps/spin will change to a single peak 
if enough MC steps/spin are used. Thus, we interpret these results as indicating a 
single transition. 

We also calculated from our MC data on 54 x 54 lattices the variation with distance 
of K ( r ) ,  equation (9). Some of the results are shown in figure 8. We see that K ( r )  
is long-ranged at low temperatures changing to short-ranged at higher temperatures, 
indicating also the existence of a single transition and suggesting that the low tem- 
perature phase is a critical one. 

In order to further clarify the phase diagram in this region we carried out an analysis 
of the data using the MCRG method. 

Some of our results using the A = 2 or A = 3 RG transformations (figures 1 and 2) 
are shown in figure 9. In figure 9( a )  we plot the second neighbour correlation functions 
calculated using the A = 2 RG transformation (figure l ) ,  G2(4, 16), G2(4, 32) and 
G2(4, 64) as functions of the temperature of the unrenormalised spins systems, for 
J 2 /  J ,  = -0.5. We see that, within the errors of the simulation, these correlation functions 
are equal for kT/  J ,  s 0.45 indicating a critical phase in this region. For kT/ J ,  > 0.45 
we find G2(4, 16) > G2(4, 32) > G2(4, 64), which is characteristic of a disordered phase. 
Therefore this analysis confirms the existence of a phase transition from the disordered 
phase at high temperature to a critical phase. 

The results described above were qualitatively reproduced in calculations at different 
values of J2/  J , ,  with other correlation functions and using both the A = 2 and A = 3 
RG transformations. 
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I 1 0  

Figure 8. Variation with distance of the correlation function K (  r )  for J J  J ,  = 0. Full curves 
are guides to the eye. Values of k T / J , :  0, -0.1; X, -0.8; A, -1.0. 

As examples we show, in figure 9(  6 )  the correlation functions Fz(8 ,  16) and F2(8,32) 
(A = 2 RG transformation) for J 2 / J 1  = -1.0, in figure 9 ( c )  F2(4, 16), Fz(4, 32) and 
F2(4, 64) ( A  = 2 RG transformation) for J 2 / J ,  = -1.4 and in figure 9 ( d )  F2(6, 18) and 
F2(6, 54) ( A  = 3 RG transformation) for Jz /  J1  = 0.5 with k T /  J1  < 0. 

For J z / J I  = -1.0 figure 9 ( b )  and k T / J 1  i 1.2, the correlation functions F2(8, 16) 
and Fz( 8,32) are equal within the statistical errors and for higher temperatures Fz( 8, 16) 
is greater than F2(8,32). For J 2 / J 1  = -1.4 (figure 9 ( c ) )  the three correlation functions 
Fz(4, 16), Fz(4, 32) and Fz(4, 64) are equal for k T / J 1  s 1.5 and Fz(4, 16) > F2(4, 32) > 
F2(4, 64) for k T / J 1  > 1.5. For J z / J 1  = 0.5 figure 9 ( d )  the A = 3 MCRG results indicate 
that Fz(6, 18) and Fz(6, 54) are equal for k T / J ,  b -0.6 and that F2(6, 18) > F2(6, 54) 
for k T /  J ,  < -0.6. Thus, all three examples support the evidence of a phase transition 
from a high temperature disordered phase to a low temperature critical phase in the 
AF region. To check the consistency of our data, we compare in figures 9 ( e )  and (f) 
the results obtained from the A = 2 and A = 3 RG transformations (figures 1 and 2) for 
the AF clock model. Both RG transformations predict, within the errors of the simula- 
tions, the same transition temperature k T /  J ,  

We also verified that the AF Potts model ( J z / J l  = 1.0 with J 1  < 0) does not exhibit 
any phase transition, as shown in figure 9 ( g )  where it is clearly seen that Fz(8, 16) > 
Fz( 8,32) for all temperatures. 
- In the limit between the F and the AF regions, which corresponds to J J J 1  = 
- 1 )/(J5 + 1) = -0.382 and J ,  > 0 we performed a MCRG analysis and the behaviour 

of the correlation functions, shown in figure 9 ( h ) ,  indicates that this model has also 
a critical phase. 

-0.95. 

The results of the previous analysis are summarised in figure 10. 
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Figure 9. Variation of correlation functions with the unrenormalised spin system tem- 
perature for ( a )  J2/J1 = -0.5; 0, G2(4, 16); A ,  G2(4, 32); I, G,(4,64), ( b )  J2/J, = -1.0; 

J21J1=0.5; 0, F2(6, 18); A, F2(6,54), (e)  AF clock model with A = 2 ;  0, F2(4, 16); A, 
F2(4,32), (f) AF clock model with A = 3 ;  0, F2(6,18); A,  F2(6,54), (g) AF scalar Potts 
model; 0, F2(8, 16); A ,  F2(8, 321, ( h )  J2/J1 = -0.381 97; 0, F2(4, 16); A, F2(4, 32). 

0, F2(8, 16); A, F2(8,32), ( c )  J2/Ji=-1.4; 0, F2(4,16); A, F2(4,32); I, F2(4,64), ( d )  

4. Conclusions 

In the F region we confirm the existence of a critical phase. For J2/  J1 = -0.3 this phase 
is identified qualitatively by the variation with distance of the spin-spin correlation 
function and by Wilson's MCRG procedure. This method also allows the determination 
of the transition temperature. These results are consistent with those obtained by 
Tobochnik (1982) for the five-state clock model (J2/J1 = 0). Our results, together with 
Tobochnik's, are shown in figure 10. Also shown are the duals to these points. 

The phase boundaries joining these points are only suggestive. Two other points 
of the phase boundary are known exactly: the Potts point P and the Fateev and 
Zamolodchikov point Q(J2/J1 = 0.64), both on the self-dual line. Following Fateev 
and Zamolodchikov's suggestion we draw the boundaries of the critical phase ending 
at Q. 
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Figure 10. Suggested phase diagram for the Z(5) model. (0) are our MCRG results and 
those obtained by symmetry, P is the transition point on the scalar Potts model line, Q is 
the transition point obtained by Fateev and Zamolodchikov, ( X )  are Tobochnik's MCRG 
results on the vector Potts model line J2/ 1, = 0. Ferromagnetic ground states are located 
to the right of point A for J ,  > 0 and to the left of point B for J ,  < 0. 

In the AF region we find two phases: a critical phase at low temperature and a 
disordered phase. The transition temperature for several values of J 2 / J 1  has been 
determined by Wilson's MCRG method using two different RG transformations. The 
results are plotted in figure 10. 

The behaviour of the spin-spin correlation function with distance confirms the 
existence of these two phases. 

In figure 10 we draw the boundary between the critical and the disordered phases 
as a continuous line running from the F region into the AF region. This is, in our 
opinion, the simplest interpretation of our data and means that the critical phase in 
the F region penetrates into the AF region. 

This interpretation is in disagreement with recent predictions made by den Nijs 
(1985) who studies the Z(5) model and its excitations in the vicinity of the SOS model 
and finds two different critical phases, one in the F region and another one in the AF 

region. This means that the boundary between the critical phase in the F region and 
the disordered phase ends at Jz /  J1 = -0.382 and that another boundary between the 
critical phase in the AF region and the disordered phase begins at the same point. Our 
results for J z / J ,  = -0.382 show that this model exhibits a critical phase. 

In order to compare our results with those of den Nijs we plot our data in terms 
of the variables A and B defined as 

and 

where x, and x2 are given by equation (4). 
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In terms of these variables the self-dual line is A = (45 + 1)/2 = 1.62. The F region 
corresponds to A > and the AF region to A < i. The diagram is symmetric with respect 
to B = O .  The Z(5) model reduces to the SOS model for B = *1 (xl = O  or x2=0)  
(Domany et a1 1980). 

Our results are shown in figure 11, together with the numerical results of Swendsen 
(1977) and Luck (1981). The predictions made by den Nijs are shown by broken lines 
in the same figure. 

The disagreement with den Nijs’ suggestion is evident from figure 11. As we pointed 
out before, the simplest interpretation of our results is that the critical phase in the F 

region penetrates into the AF region. However, the methods used in this paper cannot 
settle conclusively the exact nature of the phase boundary near the SOS model. 

2 0  

D 

A 

1 0  

B 

Figure 11. Suggested phase diagram for the Z(5) model in the A and B variables. Bars 
represent errors. (0) are our MCRG results, ( X )  are Tobochnik’s MCRG results and their 
duals, ( A )  are Luck’s results, (0) are Swendsen’s results, P is the transition point of the 
scalar Potts model, Q is the transition point of the Fateev-Zamolodchikov model, broken 
lines are den Nijs’ suggested phase diagram. 
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